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Intro: Codes

Definition (Linear Code)

forms a linear subspace.

A linear code C = {Cy, G;...} C FJ has a set of codewords that

Its distance is defined as A := min;; dy(C;, G;).

Unique decoding radius: {A
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Intro: Expander

Definition (Bipartite Expander)
(¢, d, a, 0)-bipartite expander:

» (c,d)-regular bipartite graph G = (LUR, E)

> V vertex set S C L with |S| < an, it holds that
IN(S)| > dc|S|. Where n:= |L]|.

IN(S)|=26c]S]

Note: treat ¢, d, «, d as constant



Intro: Expander Codes

Definition (Expander Codes)

Let G be a (c, d, «, d)-bipartite expander. Cy is a fixed linear inner
code of length d (same as the degree) and distance dp.

A codeword of T(G, Cp) is an assignment of bits to vertices in L
such that for each v € R, the vector of bits on its neighbors
forms a codeword in Cp.

Co={o1,00}
Ao To Motivation: Build longer codes
O ckecl\ base on (.
Challenge: A check node might
! 0) be adjacent to many corrupted
bits, running local (inner code)
7 0 Ckec‘\ decoding may not correct it.

T(6,6) = {000,010, 011,001}



Intro: Problem

» Goal: Decode Q(n) errors in linear time.

» Central Question: What conditions on the inner code
distance (dp) and graph expansion (4) are sufficient?



Related Work: Linear-time Decoding

Go Work Regime Radius
[SS96] §>3 (26 — D)an
Parity [Vid13] 6> 2 3=2an
(do =2) [CCLO23] 6 >3 dan + size-expansion
tradeoff
[DG18] dpd? > Q(c) an
General [COSS24] dyd > 3 anz(otand)
do(1+0.5c3) "
Ours dod > 2 an

Fundamental Limit [Vid13, COSS24]: Decoding is impossible if
dpd < 1.



Result 1: Randomized Decoding

Theorem (Randomized Decoding)

Randomized algorithm that can correct an errors in O(n) time for
any Expander code T (G, Cy) satisfying ddy > 2.

«: Set size in the definition of expansion
0: Expansion rate

do: Distance of Gy



Result 1: RandFlip Algorithm

» Each unsatisfied check € R sends a weight to one of its
adjacent "wrong” bits (bits flipped in local decode)

> The more "wrong" bits, the less weight it sends

» Flip each bit with a probability proportional to the sum of
the weights it receives

Theorem (3.2, Correct Constant Fraction Errors)

Let y = the closest codeword in T(G, (y), then after RandFlip:
€00
]E[dH(x y)] 1—— | du(x,y)

where t = % (unique decoding radius of Cp) andeg = L — 1 >0

(guaranteed by dyd > 2).



Result 1: Algorithm

Algorithm 1 RandFlip(x)

1t © (p1,...,pn) < (0,---,0) €R"

2: for each v € R do

3: wy ¢ Decode(xx(,))

4: if 1 < dH(anXN(v)) < t then

5: Choose any i € N(v) where w, and xy, differ

6: pi < pi + M > Weighted voting allows
ddp > 2

7: end if

8: end for

9: for each i € [n] do

10: Flip x; with probability p;

11: end for

12: return x

Final algorithm: RandFlip O(log n) times



Result 1: Proof Sketch

F: Set of corrupted bits (|F| < an)
Ni(F): Check nodes with exactly k neighbors in F

d
> KINK(F)| = clFl, ZINk )| = dclF|.
k=1
(Expansion Property)

Multiplying the second by t = % + € and subtracting the first:

d
D (= K)INk(F)| > eodclF|.
k=1

Key Observation

Contribution of a vertex in Ng(F) to the expectation is at least
t—k
et -

=] = = = =



Result 1: Proof Sketch

Lemma (3.3, Guarantees on false local decode)
For v € Ni(F) with w := Decode(xy(.))-

> If w = ypn() (Correct Co codeword): dy(w, xn(v)) = k

. t—dpy (wy,Xp(y
Recall: sent weight= H(Vzt 0),

> If w # yn(v) (Alternate Co codeword): dy(w, xy(,y) = do — k

vote.

> Wrong votes are sent only when w # yy,)
> Lemma 3.3 bounds the negative contribution of a wrong




Limitations of the " Local Unique Decoding” Approach

Informal Remark (Necessary Condition)

ddp > 2 is necessary for the " Local Unique Decoding” approach

> Possible that |F| = an, [N(F)| = Zcl|F|

» Each v € N(F) is a neighbor of exactly % bits in F, unable to
unique decode.

"Can't unique decode” its self still provides useful information, e.g.
when Cp=parity check code. Can we extend the techniques?




Result 2: Deterministic Decoding

Theorem (Deterministic Decoding)

Deterministic algorithm that can correct an errors in O(n) time
for any Expander code T(G, Cy) with ddy > 2.

Derandomization ldea in [COSS24]:
DeterFlip: Flip all bits that receive a specific amount of weight

» Correct votes have Q(|F|) advantage over incorrect votes

» Constant number (O(cdp) = O(1)) of choices

» 3 Choice that reduces Q(F) errors (don't know which)
DeepFlip (repeat): Search O(1)-length sequence of choices

» U = set of unsatisfied check, ¢;|U| < |F| < o|U| by
expansion (loosely proportional)

» prune if |U| > c3n, guarantee |F| < an

» preserve the branch that |U| decreased the most (guarantees a
constant fraction reduction in |F|)



Result 2: A loss in decoding radius

Why [COSS24] need |Finitiall < grrgsegy < an?

Prune condition: |U| > c3n
Guarantee: |F| < an and thus d-expansion.

Leave a "safety margin”: Otherwise, one can’t distinguish
between Fipitias and |F| > an (JU| and |F| is loosely
proportional).



Result 2: Preliminary Search

Preliminary Search before the entire algorithm:
1. Search r = O(1) steps of DeterFlip choices
(without pruning)

2. Guarantee:

> At least one branch reduces |F| from an to < mn
(don't know which)

> O(1)" = O(1) branches

3. Repeatedly DeepFlip on all branches simultaneously,

» prune a branch when its time exceeds O(n)
> verify the final decoding result (distance to initial vector x)



Result 3: Tool — Size-Expansion tradeoff

Lemma (Size-Expansion Tradeoff

Any (c,d, a, d)-bipartite expander is also a
(¢, d, ka, f5(k))-bipartite expander, where k > 1 is a constant,
fs(k) is defined by a LP (omitted).

x|

Larger set =—> weaker expansion, better than trivial bound
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Result 3: Distance Bound & Decoding Radius

Theorem (Tight Distance Bound in )

The distance of the Expander code T(G, Cy) is:
» Jower bounded by f('s_l(dlo)an

» "upper bounded by (1 + o(l))fé_l(dlo)an” for sufficiently
small « (construction on regular graph)

Generalizes the bound for Cy = parity check code from [CCLO23]
Theorem (Improved Decoding Radius)

Suppose ddy > 2. Our algorithm can decode up to f{l (%) an
errors in O(n) time.

Stronger expansion (0) = larger decoding radius.



Thank you!



