Improved Decoding of Tanner Codes

Zhaienhe Zhou University of Science and Technology of China Zeyu Guo The Ohio State University

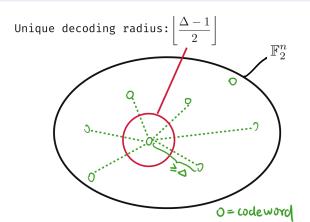
ISIT 2025 June 26, 2025

Intro: Codes

Definition (Linear Code)

A linear code $C = \{C_1, C_2 ...\} \subseteq \mathbb{F}_2^n$ has a set of codewords that forms a **linear subspace**.

Its distance is defined as $\Delta := \min_{i \neq j} d_H(C_i, C_j)$.

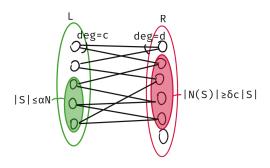


Intro: Expander

Definition (Bipartite Expander)

 (c, d, α, δ) -bipartite expander:

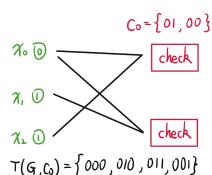
- ▶ (c, d)-regular bipartite graph $G = (L \cup R, E)$
- ▶ \forall vertex set $S \subseteq L$ with $|S| \le \alpha n$, it holds that $|N(S)| \ge \delta c|S|$. Where n := |L|.



Intro: Expander Codes

Definition (Expander Codes)

Let G be a (c, d, α, δ) -bipartite expander. C_0 is a fixed linear **inner code** of length d (same as the degree) and distance d_0 . A codeword of $T(G, C_0)$ is an assignment of bits to vertices in L such that for each $v \in R$, the vector of bits on its neighbors forms a codeword in C_0 .



Motivation: Build longer codes base on C_0 .

Challenge: A check node might be adjacent to many corrupted bits, running local (inner code) decoding may not correct it.

Intro: Problem

- ▶ **Goal:** Decode $\Omega(n)$ errors in linear time.
- ▶ **Central Question:** What conditions on the inner code distance (d_0) and graph expansion (δ) are sufficient?

Related Work: Linear-time Decoding

<i>C</i> ₀	Work	Regime	Radius
Parity $(d_0 = 2)$	[SS96]	$\delta > \frac{3}{4}$	$(2\delta-1)\alpha$ n
	[Vid13]	$\delta > \frac{2}{3}$	$\frac{3\delta-2}{2\delta-1}\alpha$ n
	[CCLO23	$\delta > \frac{3}{4}$	$\delta lpha n + ext{size-expansion}$ tradeoff
General	[DG18] d	$d_0\delta^2 > \Omega(c)$	α n
	COSS24] $d_0\delta > 3$	αn (rand)
			$rac{2lpha}{d_0(1+0.5c\delta)}n$
	Ours	$d_0\delta > 2$	lphan

Fundamental Limit [Vid13, COSS24]: Decoding is impossible if $d_0\delta \leq 1$.

Result 1: Randomized Decoding

Theorem (Randomized Decoding)

Randomized algorithm that can correct αn errors in O(n) time for any Expander code $T(G, C_0)$ satisfying $\delta d_0 > 2$.

 α : Set size in the definition of expansion

 δ : Expansion rate

 d_0 : Distance of C_0

Result 1: RandFlip Algorithm

- ► Each unsatisfied check $\in R$ sends a weight to one of its adjacent "wrong" bits (bits flipped in local decode)
- ▶ The more "wrong" bits, the **less** weight it sends
- Flip each bit with a probability proportional to the sum of the weights it receives

Theorem (3.2, Correct Constant Fraction Errors)

Let y =the closest codeword in $T(G, C_0)$, then after RandFlip:

$$\mathbb{E}\big[d_H(x',y)\big] \leq \left(1 - \frac{\varepsilon_0 \delta}{t}\right) d_H(x,y)$$

where $t = \frac{d_0}{2}$ (unique decoding radius of C_0) and $\varepsilon_0 = \frac{d_0}{2} - \frac{1}{\delta} > 0$ (guaranteed by $d_0 \delta > 2$).

Result 1: Algorithm

Algorithm 1 RandFlip(x)

```
1: t \leftarrow \frac{d_0}{2}, (p_1, \ldots, p_n) \leftarrow (0, \cdots, 0) \in \mathbb{R}^n
 2: for each v \in R do
 3: w_v \leftarrow \mathsf{Decode}(x_{n(v)})
 4: if 1 \le d_H(w_v, x_{N(v)}) < t then
              Choose any i \in N(v) where w_v and x_{N(v)} differ
 6: p_i \leftarrow p_i + \frac{t - d_H(w_v, x_{N(v)})}{ct} > Weighted voting allows
    \delta d_0 > 2
       end if
 8: end for
 9: for each i \in [n] do
        Flip x_i with probability p_i
10:
11: end for
12: return x
```

Final algorithm: RandFlip $O(\log n)$ times

Result 1: Proof Sketch

F: Set of corrupted bits $(|F| \le \alpha n)$

 $N_k(F)$: Check nodes with exactly k neighbors in F

$$\sum_{k=1}^d k |N_k(F)| = c|F|, \quad \sum_{k=1}^d |N_k(F)| \geq \delta c|F|.$$
 (Expansion Property)

Multiplying the second by $t=\frac{1}{\delta}+\varepsilon_0$ and subtracting the first:

$$\sum_{k=1}^{d} (t-k)|N_k(F)| \ge \varepsilon_0 \delta c|F|.$$

Key Observation:

Contribution of a vertex in $N_k(F)$ to the expectation is at least $\frac{t-k}{t}$.

Result 1: Proof Sketch

Lemma (3.3, Guarantees on false local decode)

For $v \in N_k(F)$ with $w := Decode(x_{N(v)})$:

- ► If $w = y_{N(v)}$ (Correct C_0 codeword): $d_H(w, x_{N(v)}) = k$
- ▶ If $w \neq y_{N(v)}$ (Alternate C_0 codeword): $d_H(w, x_{N(v)}) \geq d_0 k$

Recall: sent weight= $\frac{t-d_H(w_v,x_{N(v)})}{ct}$.

- ▶ Wrong votes are sent **only when** $w \neq y_{N(v)}$
- Lemma 3.3 bounds the negative contribution of a wrong vote.

Limitations of the "Local Unique Decoding" Approach

Informal Remark (Necessary Condition)

 $\delta \textit{d}_0 > 2$ is necessary for the "Local Unique Decoding" approach

- Possible that $|F| = \alpha n$, $|N(F)| = \frac{2}{d_0}c|F|$
- ▶ Each $v \in N(F)$ is a neighbor of exactly $\frac{d_0}{2}$ bits in F, unable to unique decode.

Open Question

"Can't unique decode" its self still provides useful information, e.g. when C_0 =parity check code. Can we extend the techniques?

Result 2: Deterministic Decoding

Theorem (Deterministic Decoding)

Deterministic algorithm that can correct αn errors in O(n) time for any Expander code $T(G, C_0)$ with $\delta d_0 > 2$.

Derandomization Idea in [COSS24]:

DeterFlip: Flip all bits that receive a specific amount of weight

- ▶ Correct votes have $\Omega(|F|)$ advantage over incorrect votes
- ▶ Constant number $(O(cd_0) = O(1))$ of choices
- ightharpoonup \exists Choice that reduces $\Omega(F)$ errors (don't know which)

DeepFlip (repeat): Search O(1)-length sequence of choices

- ▶ U :=set of unsatisfied check, $c_1|U| \le |F| \le c_2|U|$ by expansion (loosely proportional)
- ▶ prune if $|U| > c_3 n$, guarantee $|F| < \alpha n$
- ▶ preserve the branch that |U| decreased the most (guarantees a constant fraction reduction in |F|)

Result 2: A loss in decoding radius

Why [COSS24] need
$$|F_{\text{initial}}| < \frac{2\alpha}{d_0(1+0.5c\delta)}n < \alpha n$$
?

Prune condition: $|U| > c_3 n$ Guarantee: $|F| \le \alpha n$ and thus δ -expansion.

Leave a "safety margin": Otherwise, one can't distinguish between $F_{initial}$ and $|F| > \alpha n$ (|U| and |F| is **loosely proportional**).

Result 2: Preliminary Search

Preliminary Search before the entire algorithm:

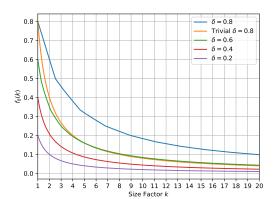
- 1. Search r = O(1) steps of DeterFlip choices (without pruning)
- 2. Guarantee:
 - At least one branch reduces |F| from αn to $\leq \frac{2\alpha}{d_0(1+0.5c\delta)}n$ (don't know which)
 - $ightharpoonup O(1)^r = O(1)$ branches
- Repeatedly DeepFlip on all branches simultaneously,
 - ightharpoonup prune a branch when its time exceeds O(n)
 - ightharpoonup verify the final decoding result (distance to initial vector x)

Result 3: Tool – Size-Expansion tradeoff

Lemma (Size-Expansion Tradeoff [CCLO23])

Any (c, d, α, δ) -bipartite expander is also a $(c, d, k\alpha, f_{\delta}(k))$ -bipartite expander, where k > 1 is a constant, $f_{\delta}(k)$ is defined by a LP (omitted).

Larger set \implies weaker expansion, better than trivial bound $\frac{\delta}{k}$



Result 3: Distance Bound & Decoding Radius

Theorem (Tight Distance Bound in General C_0)

The distance of the Expander code $T(G, C_0)$ is:

- lower bounded by $f_{\delta}^{-1}(\frac{1}{d_0})\alpha n$
- ▶ "upper bounded by $(1 + o(1))f_{\delta}^{-1}(\frac{1}{d_0})\alpha n$ " for sufficiently small α (construction on regular graph)

Generalizes the bound for C_0 = parity check code from [CCLO23]

Theorem (Improved Decoding Radius)

Suppose $\delta d_0 > 2$. Our algorithm can decode up to $f_{\delta}^{-1}\left(\frac{2}{d_0}\right) \alpha n$ errors in O(n) time.

Stronger expansion $(\delta) \implies$ larger decoding radius.

Thank you!