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Intro: Codes

Definition (Linear Code)

A linear code C = {C1,C2 . . .} ⊆ Fn
2 has a set of codewords that

forms a linear subspace.
Its distance is defined as ∆ := mini ̸=j dH(Ci ,Cj).



Intro: Expander

Definition (Bipartite Expander)

(c , d , α, δ)-bipartite expander:

▶ (c , d)-regular bipartite graph G = (L ∪ R,E )

▶ ∀ vertex set S ⊆ L with |S | ≤ αn, it holds that
|N(S)| ≥ δc |S |. Where n := |L|.

Note: treat c , d , α, δ as constant



Intro: Expander Codes

Definition (Expander Codes)

Let G be a (c , d , α, δ)-bipartite expander. C0 is a fixed linear inner
code of length d (same as the degree) and distance d0.
A codeword of T (G ,C0) is an assignment of bits to vertices in L
such that for each v ∈ R, the vector of bits on its neighbors
forms a codeword in C0.

Motivation: Build longer codes
base on C0.
Challenge: A check node might
be adjacent to many corrupted
bits, running local (inner code)
decoding may not correct it.



Intro: Problem

▶ Goal: Decode Ω(n) errors in linear time.

▶ Central Question: What conditions on the inner code
distance (d0) and graph expansion (δ) are sufficient?



Related Work: Linear-time Decoding

C0 Work Regime Radius

Parity
(d0 = 2)

[SS96] δ > 3
4 (2δ − 1)αn

[Vid13] δ > 2
3

3δ−2
2δ−1αn

[CCLO23] δ > 3
4 δαn + size-expansion

tradeoff

General

[DG18] d0δ
2 > Ω(c) αn

[COSS24] d0δ > 3 αn (rand)
2α

d0(1+0.5cδ)n

Ours d0δ > 2 αn

Fundamental Limit [Vid13, COSS24]: Decoding is impossible if
d0δ ≤ 1.



Result 1: Randomized Decoding

Theorem (Randomized Decoding)

Randomized algorithm that can correct αn errors in O(n) time for
any Expander code T (G ,C0) satisfying δd0 > 2.

α: Set size in the definition of expansion

δ: Expansion rate

d0: Distance of C0



Result 1: RandFlip Algorithm

▶ Each unsatisfied check ∈ R sends a weight to one of its
adjacent ”wrong” bits (bits flipped in local decode)

▶ The more ”wrong” bits, the less weight it sends

▶ Flip each bit with a probability proportional to the sum of
the weights it receives

Theorem (3.2, Correct Constant Fraction Errors)

Let y = the closest codeword in T (G ,C0), then after RandFlip:

E
[
dH(x

′, y)
]
≤

(
1− ε0δ

t

)
dH(x , y)

where t = d0
2 (unique decoding radius of C0) and ε0 =

d0
2 −

1
δ > 0

(guaranteed by d0δ > 2).



Result 1: Algorithm

Algorithm 1 RandFlip(x)

1: t ← d0
2 , (p1, . . . , pn)← (0, · · · , 0) ∈ Rn

2: for each v ∈ R do
3: wv ← Decode(xn(v))
4: if 1 ≤ dH(wv , xN(v)) < t then
5: Choose any i ∈ N(v) where wv and xN(v) differ

6: pi ← pi +
t−dH(wv ,xN(v))

ct ▷ Weighted voting allows
δd0 > 2

7: end if
8: end for
9: for each i ∈ [n] do

10: Flip xi with probability pi
11: end for
12: return x

Final algorithm: RandFlip O(log n) times



Result 1: Proof Sketch

F : Set of corrupted bits (|F | ≤ αn)

Nk(F ): Check nodes with exactly k neighbors in F

d∑
k=1

k|Nk(F )| = c |F |,
d∑

k=1

|Nk(F )| ≥ δc |F |.

(Expansion Property)

Multiplying the second by t = 1
δ + ε0 and subtracting the first:

d∑
k=1

(t − k)|Nk(F )| ≥ ε0δc|F |.

Key Observation:

Contribution of a vertex in Nk(F ) to the expectation is at least
t−k
ct .



Result 1: Proof Sketch

Lemma (3.3, Guarantees on false local decode)

For v ∈ Nk(F ) with w := Decode(xN(v)):

▶ If w = yN(v) (Correct C0 codeword): dH(w , xN(v)) = k

▶ If w ̸= yN(v) (Alternate C0 codeword): dH(w , xN(v)) ≥ d0 − k

Recall: sent weight=
t−dH(wv ,xN(v))

ct .

▶ Wrong votes are sent only when w ̸= yN(v)

▶ Lemma 3.3 bounds the negative contribution of a wrong
vote.



Limitations of the ”Local Unique Decoding” Approach

Informal Remark (Necessary Condition)

δd0 > 2 is necessary for the ”Local Unique Decoding” approach

▶ Possible that |F | = αn, |N(F )| = 2
d0
c |F |

▶ Each v ∈ N(F ) is a neighbor of exactly d0
2 bits in F , unable to

unique decode.

Open Question

”Can’t unique decode” its self still provides useful information, e.g.
when C0=parity check code. Can we extend the techniques?



Result 2: Deterministic Decoding

Theorem (Deterministic Decoding)

Deterministic algorithm that can correct αn errors in O(n) time
for any Expander code T (G ,C0) with δd0 > 2.

Derandomization Idea in [COSS24]:
DeterFlip: Flip all bits that receive a specific amount of weight

▶ Correct votes have Ω(|F |) advantage over incorrect votes

▶ Constant number (O(cd0) = O(1)) of choices

▶ ∃ Choice that reduces Ω(F ) errors (don’t know which)

DeepFlip (repeat): Search O(1)-length sequence of choices

▶ U := set of unsatisfied check, c1|U| ≤ |F | ≤ c2|U| by
expansion (loosely proportional)

▶ prune if |U| > c3n, guarantee |F | < αn

▶ preserve the branch that |U| decreased the most (guarantees a
constant fraction reduction in |F |)



Result 2: A loss in decoding radius

Why [COSS24] need |Finitial| < 2α
d0(1+0.5cδ)n < αn?

Prune condition: |U| > c3n
Guarantee: |F | ≤ αn and thus δ-expansion.

Leave a ”safety margin”: Otherwise, one can’t distinguish
between Finitial and |F | > αn (|U| and |F | is loosely
proportional).



Result 2: Preliminary Search

Preliminary Search before the entire algorithm:

1. Search r = O(1) steps of DeterFlip choices
(without pruning)

2. Guarantee:
▶ At least one branch reduces |F | from αn to ≤ 2α

d0(1+0.5cδ)n

(don’t know which)
▶ O(1)r = O(1) branches

3. Repeatedly DeepFlip on all branches simultaneously,
▶ prune a branch when its time exceeds O(n)
▶ verify the final decoding result (distance to initial vector x)



Result 3: Tool – Size-Expansion tradeoff

Lemma (Size-Expansion Tradeoff [CCLO23])

Any (c, d , α, δ)-bipartite expander is also a
(c , d , kα, fδ(k))-bipartite expander, where k > 1 is a constant,
fδ(k) is defined by a LP (omitted).

Larger set =⇒ weaker expansion, better than trivial bound δ
k

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Size Factor k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f
(k

)

= 0.8
Trivial = 0.8

= 0.6
= 0.4
= 0.2



Result 3: Distance Bound & Decoding Radius

Theorem (Tight Distance Bound in General C0)

The distance of the Expander code T (G ,C0) is:

▶ lower bounded by f −1
δ ( 1

d0
)αn

▶ ”upper bounded by (1 + o(1))f −1
δ ( 1

d0
)αn” for sufficiently

small α (construction on regular graph)

Generalizes the bound for C0 = parity check code from [CCLO23]

Theorem (Improved Decoding Radius)

Suppose δd0 > 2. Our algorithm can decode up to f −1
δ

(
2
d0

)
αn

errors in O(n) time.

Stronger expansion (δ) =⇒ larger decoding radius.



Thank you!


