Improved Decoding of Tanner Codes

Zhaienhe Zhou

School of the Gifted Young & College of Computer Science

University of Science and Technology of China
Hefei 230026, China.
Email: zhaienhezhou@ gmail.com

Abstract—In this paper, we present improved decoding algo-
rithms for expander-based Tanner codes.

We begin by developing a randomized linear-time decoding
algorithm that, under the condition that §dy > 2, corrects up to
an errors for a Tanner code T'(G,Cy), where G is a (c, d, a, J)-
bipartite expander with n left vertices, and Cy C F¢ is a linear
inner code with minimum distance do. This result improves upon
the previous work of Cheng, Ouyang, Shangguan, and Shen
(RANDOM 2024), which required ddo > 3.

We further derandomize the algorithm to obtain a deter-
ministic linear-time decoding algorithm with the same decoding
radius. Our algorithm improves upon the previous deterministic
algorithm of Cheng et al. by achieving a decoding radius of an,
compared with the previous radius of mn.

Additionally, we investigate the size-expansion trade-off in-
troduced by the recent work of Chen, Cheng, Li, and Ouyang
(IEEE TIT 2023), and use it to provide new bounds on the
minimum distance of Tanner codes. Specifically, we prove that the
minimum distance of a Tanner code T'(G, Co) is approximately
5t (i) an, where fs(-) is the Size-Expansion Function. As
another application, we improve the decoding radius of our

decoding algorithms from an to approximately f; ! (%) Qan.

I. INTRODUCTION

Tanner codes are constructed by assigning a linear inner
code Cy of length d and minimum distance dj to the vertices
of a sparse bipartite graph. Specifically, bits are placed on
the left side of the bipartite graph, and each vertex on the
right side is assigned an inner code that imposes constraints
on the connected bits. To analyze the decoding algorithms of
LDPC and Tanner codes, Sipser and Spielman [1] introduced
the concept of vertex expansion. Expander codes are a special
class of Tanner codes constructed from (c,d, «, d)-bipartite
expanders, where ¢, d, «, and § are constants. Specifically,
the graph G = (L U R, E) is left-regular of degree ¢ and
right-regular of degree d, and for any S C L with |S| < an,
the number of neighbors of S is at most d¢|S|. Expander codes
are known for their efficient decoding algorithms, which can
correct §2(n) errors in linear time. Research [1]-[8] has fo-
cused on optimizing the decoding radius and other parameters
while keeping the decoding algorithm linear-time.

Consider the special case where the inner code is a parity-
check code. In this case, the flip algorithm introduced by
Sipser and Spielman [1] can decode up to (25 —1)an errors in
linear time for any expander code with § > %. Later, Viderman

[6] proposed a new decoding method, which corrects up to

%an errors in linear time when § > %

Zeyu Guo
Department of Computer Science and Engineering
The Ohio State University
Columbus, OH, USA.
Email: zguotcs@gmail.com

More recently, Chen, Cheng, Li, and Ouyang [8] gave an im-
proved decoding algorithm by combining previous approaches
and introducing a method they term ‘“expansion guessing.”
They also discovered a size-expansion trade-off, which enables
the expansion of larger sets to be inferred from smaller
sets. They showed that expander codes achieve a minimum

1

distance of 2T=3) Y1 and their decoding algorithm achieves

a decoding radius of ﬁan, which is nearly half of the
code’s distance. However, their algorithm still requires 6 > %
to use the flip algorithm. This raises an open question: What
is the minimum ¢ required to decode a linear number of errors
in linear time? It was shown in [6] that § > % is necessary.
The above studies focus on the special case of expander
codes where the inner code () is a parity-check code. Progress
has also been made on the general case [9]-[11]. Notably,
Dowling and Gao [10] proved that the condition dpd? = Q(c)
is sufficient for error correction using a flip-based decoding
algorithm. More recently, Cheng, Ouyang, Shangguan, and
Shen [11] improved this result by showing that ddy > 3 is
sufficient for error correction, while ddy > 1 is necessary.
However, many questions remain open about the optimal
parameters. In particular, there is still a gap between the
sufficient and necessary conditions for dd; to enable a linear-
time decoding. In this paper, we narrow this gap by proving
that ddy > 2 is sufficient for expander-based Tanner codes.

A. Main Results

Let T(G,Cy) be a Tanner code based on a bipartite ex-
pander G and an inner code Cj (see Definition 2.2). Our first
main result is a deterministic linear-time decoding algorithm
for T(G, Cy).

Theorem 1.1 (Informal version of Theorem 4.6): Suppose
ddo > 2. There exists a deterministic O(n)-time algorithm that
corrects up to an errors for any Tanner code T(G, Cy) C F73,
where G is a (¢, d, a, §)-bipartite expander and Cj is an inner
code with minimum distance d.

Previously, under the condition ddy > 3, Cheng et al. [11]
gave a randomized O(n)-time decoding algorithm that corrects
an errors, as well as a deterministic O(n)-time algorithm with
a smaller decoding radius MTA. Theorem 1.1 relaxes
the condition to ddy > 2 and derandomizes the randomized
decoding algorithm without reducing the decoding radius an.

We also investigate the size-expansion trade-off introduced
by [8]. Specifically, we define the Size-Expansion Function

fs(k) (Definition 5.1), which satisfies the following property:
Any (c,d, «, §)-bipartite expander is also a (c, d, ka, fs(k))-
bipartite expander for £ > 1. Consequently, our decod-
ing algorithm achieves a decoding radius of approximately
fs ! (d%) an, which is strictly larger than an.

Theorem 1.2 (Informal version of Theorem 5.5): Theo-
rem 1.1 still holds with the decoding radius increased to
approximately fy ! <%> an.

Finally, we establish the following tight bound on the
minimum distance of T'(G, Cy):

Theorem 1.3 (Informal version of Theorems 5.4 and 5.6):

Suppose ddy > 1. The minimum distance of T'(G, Cp) is at

least approximately f;° ! <%> an. This lower bound is tight

in the sense that it is achieved by infinitely many examples.

II. PRELIMINARIES

For n € N, denote by [n] the set {1,2,...,n}.

a) Codes: All codes in this paper are assumed to be
Boolean linear codes. The Hamming weight of z € F} is
denoted wt(x). The Hamming distance between z,y € F¥ is
dy(z,y) :— wt(z — y). The minimum distance of a code C' is
dy(C) :— min{dy (z,y) : x,y € C,x # y}.

b) Bipartite graphs and expanders: A bipartite graph
G = (LUR,E) is called (c,d)-regular if deg(u) = ¢ for
all v € L and deg(v) = d for all v € R.

For S C LUR, let N(S) denote the set of all neighbors
of S. Define N;(.S) as the set of vertices adjacent to exactly
i vertices in S. Additionally, define N>;(S) = U;>; N;(S)
and N<;(S) == U;<; N;(S). Define E(S,T) as the set of
edges connecting the two vertex sets .S and 7.

Definition 2.1 (Bipartite expander): A (c,d, «,d)-bipartite
expander is a (c,d)-regular bipartite graph G = (LU R, E)
such that |N(S)| > d¢|S| for any S C L with |S| < a|L|. For
h#£SCL,cal % the expansion factor of S.

Definition 2.2 (Tanner code): Let Cy be a code of length
d. Let G = (LUR,E) be a (c,d,a,d)-bipartite expander,
where L = [n] for some n € N*t. For each v € R, fix a total
ordering on N (v), and let N(v,4) denote its i-th element for
i € [d]. For z € F} and v € R, define

TN (v) = (‘TN(U71)7 R 71'N(v,d)) € Fg
The Tanner code T(G, Cy) is defined as
T(G,Co) = {.’E S Fg TIN(v) € Cy for all v € R} - Fg

Throughout this paper, we fix positive integers ¢, d and real
numbers «, § € (0,1] as constants. Also, let G = (LU R, E)
be a (c,d, a, d)-bipartite expander with L = [n], and let Cy
be a code of length d with minimum distance dy. All lemmas
and theorems are stated under the assumption that G and Cj
are given, without explicitly mentioning this.

For convenience, we introduce the following definition.

Definition 2.3 (Corrupt bits and unsatisfied checks): For
x,y € F§, define F(z,y) = {i € [n] : x; # yi}
Define F(z) = F(x,y), where y is the closest codeword
to z in T(G, Cp) with respect to the Hamming distance. (If

there are multiple closest codewords, y is chosen to be the
lexicographically smallest one.)

Let U(z) C R denote the set of unsatisfied checks, defined
as U(xz) ={veER:xnw) € Co}

Finally, We present some useful auxiliary lemmas. The
proofs are omitted and can be found in the full version [12].

Lemma 2.4: For any S C L with |S| < an and integer
t > 0, it holds that [N<,(S)| > 2ED=L. g5,

Lemma 2.5: Let x € Fy and y € T(G,Cp) such that
di(z,y) < an. Let F = F(x,y). Then c|F| > |U(z)| >
[Nedgo1(F)] = 2=L . o| |

Lemma 2.6: For any S C L, [N>(S5)| < ¢[S|.

Lemma 2.7: Suppose G is a (¢, d, «, §)-bipartite expander
and the inner code C has distance dy. If ddy > 1, then the
distance of T(G, Cp) is greater than an.

III. RANDOMIZED DECODING

In this section, we present an improved randomized flipping
algorithm and extend it to a randomized decoding algorithm.
We follow the approach of [11] which uses the following idea:
Let each unsatisfied check v cast a “vote” on which bits to flip.
Then, each bit is flipped with a probability determined by the
votes it receives. This process corrects a constant fraction of
errors. By repeating it logarithmically many times, the received
word can be corrected with high probability.

Our improvement is achieved by allowing each v to send a
weighted vote based on dg (2 (y),y) When dy(zn(y),y) <
do/2, where y € Cj is the closest codeword to), rather
than using an unweighted vote when dy (zn(v), y) < do/3, as
was done in [11]. (At a high level, this bears some similarity
with the GMD decoding algorithms for concatenated codes
[13], where a large dg(zn(v),y) suggests that y is likely
incorrect.) This modification enables a tighter analysis.

A. Randomized Flipping

Let Decode(x) denote the function that, given z € Fg,
returns y € Cy closest to « in Hamming distance, with ties
broken by selecting the lexicographically smallest y.

We now present the randomized flipping algorithm.

Algorithm 1 RandFlip(z)
., Tn) € FY, where n = |L|.

Input: z = (x4, ..
Lt G
: (p1y. ey pn) — (0,---,0) €R”
: for each v € R do
w, < Decode(z y(v))
if 1 <dg(wy, zn(y)) <t then
Choose the smallest i € N (v) where w, and x y(,)
differ

AN A

t—dg (Wy,TN(v))

T Di & pi t o
8: end if
9: end for

10: for each i € [n] do

11: Flip z; with probability p;
12: end for

13: return x

It is easy to see p; € [0, 1] at Line 11, ensuring the validity
of this line. A proof can be found in the full version [12].

Theorem 3.1: Assume dod > 2. Let g9 = % — £ > 0.
Let x € F§ and y € T(G,Cp) such that dy(z,y) < an.
Let 2’ be the output of Algorithm 1 with x as input. Then

To prove Theorem 3.1, we need the following lemma. Recall
that F'(z,y) = {i € [n] : x; # vi}.

Lemma 3.2: Letx € F3, y € T(G,Cy), and F = F(x,y).
Let v € N(F) for some integer k. Let w, = Decode(x n(.))
as in Algorithm 1. If w, = yn(v), then dy(wy, Ty)) =
k. On the other hand, if w, # yn(,), then dy — k <
dg (Wwy, TN (y)) < k. The latter case occurs only if & > % =t,
ie., v e Nxy(F).

Proof: By the definition of ' and the choice of v, we have
dr(YN@w) TN W) = k. As y € T(G, Cp), we have yy(,) €
Co. As w, is a vector in Cy closest to zy(,), we have

dr(Wy, TN(v)) < da(YN () TN () = K.

If w, = YN (z)> then dH(wv,«TN(v)) = dH(fL'N(v)ayN(u)) =k.
On the other hand, if w, # YN (z)» then the distance between
these two codewords of Cj is at least dy, which implies
di(Wo, TN(v)) = da(We, Yn(w)) — dH(ZN() YN @) = do —
k. This proves the lemma.]

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1:

Let F = {i € [n] : x; # y;}, whose size is dy(z,y) < an.

By and linearity of expectation, we have

> vi-

i€EF

Eldu (', y)) = |F| - opi|. M
i€n]\F

Consider any v € R. In the iteration of the first loop corre-
t—dy (Wy,TN(v))

sponding to v, some p; may increase by — . We
analyze how this affects the quantity » ;. p; — Zie[n]\ 7 Di-
Suppose v has k neighbors in F, i.e., v € Ni(F).

Case 1: k = 0. In this case, dp(wy, Zn(y)) = 0. Due to
the condition 1 < dy (w,,TN@)) <t at Line 5, the iteration
corresponding to v does not affect 3, o pi — >\ F Pi-

Case 2: 1 < k < t. In this case, we have dg(w,, zN(U)) =
k e [1,t) and w, = yn(v) by Lemma 3.2. In the iteration
corresponding to v, the index ¢ chosen at Line 6 is in F'

since wy, = Yn(v). Thus, this iteration contributes exactly
t—dp (We,TNw)) _ t—k
ct ot to ZiEF bi — Zie[n]\F Di-

Case 3: t < k < dp. In this case, we have dp(w,, TN(v)) =
do—k = 2t —k by Lemma 3.2. Thus, the iteration correspond-

. : t—dp (wo,T N (o (2t
ing to v contributes at least — H(“;t IN@)) 5 t=(2ick)

- ct
t—k
c to ZiEF pi — Zze[n]\F Di.
Case 4: k > dg. In this case, we have dH(wU,xN(v)) >
0. Thus, the itegation corresponding to v contributes at least
t—du (Wy, TN (v t t—k k
-t = 0 > icr Pi = Dicinl\F Pis
where the last inequality uses the fact that k& > dy = 2t.
By the above discussion, We have

d
—k
Sp- ¥ piz;tdm(m @)

i€F i€[n]\F

By the definition of Nj(-) and the fact that G is left-regular
of degree ¢, we have

Zk\Nk

As |F| < an and G is a (¢, d, a, §)-bipartite expander,

d
> INk(F)
k=1

Multiplying both sides of (4) by t = % +€o and subtracting
both sides of (3), we obtain

|E(F, N(F))| = c|F]|. 3)

— [N(F)| > 5¢|F. @)

d
> (t = k)[Nk(F)| > eodc|F|.)
k=1
Combining (1), (2), and (5) shows E[dg(z',y)] < (1 —
%‘S)|F| =(1- %)dH(x,y), as desired.]

Following analyses similar to those in [1], [10], [11], we
have the following lemma, which bounds the time complexity
of Algorithm 1. Its proof is provided in the full version [12].

Lemma 3.3: Algorithm 1 can be implemented to run in
O(|F(x,y)|) time, where y is any codeword of T'(G, Cy).

While Algorithm 1 is expected to reduce the number of
corrupt bits by a constant factor, the number may increase.
Nevertheless, the following lemma shows that any such in-
crease will not be too large.

Lemma 3.4: Let x € Fy, y € T(G,C)h), and F = {i €
[n] : x; # y;}. The number of ¢ € [n] \ F' such that p; > 0 at
the end of RandFlip(x) is at most £|F'|. In particular, for 2" =
RandFlip(z), we always have dg (', y) < (1 + $)du(z,y).

Proof: Consider v € U(x) such that the corresponding
iteration increases p; from zero to nonzero for some i € [n]\ F.
By the way 7 is chosen at Line 6, we know w, and xp ()
differ at this bit. As i € [n] \ F', we know zx(,) and yn ()
agree at this bit. So w, # yn(v). By Lemma 3.2, this occurs
only if v € N>(F). Finally, by Lemma 2.6, the number of
v € N>¢(F) is at most §|F]|. u

B. Flipping Iteratively

We present our randomized decoding algorithm:

Algorithm 2 RandDecode(z)
Input: = = (x1,...,2,) € F}
1: while |U(z)| > 0 do
2: x + RandFlip(x)
3: end while
4

: return v

Theorem 3.5: Suppose dod > 2. Let ¢p = % — 1 > 0.
Let x € F§ and y € T(G,Cp) such that dpy(z,) < a
Given the input z, Algorithm 2 outputs y in O(n) time w 1th

probability 1 — o(1).

We omit the proof of Theorem 3.5 and refer the reader to the
full version [12]. We remark that Theorem 3.5 is not needed
in the analysis of our deterministic decoding algorithm.

IV. DETERMINISTIC DECODING

We begin by applying the same derandomization technique
as in [11] to develop a deterministic algorithm that corrects
yn errors when ddy > 2, where v = (1+ %)_1 ‘iz)o__lloz.
Subsequently, we introduce an additional step before running
this algorithm, extending the decoding radius to an.

The main idea in [11] is as follows: The set L = [n] is par-
titioned into O(1) buckets based on their flipping probability
p;. It can be shown that at least one of these buckets contains
a significantly higher proportion of corrupt bits than uncorrupt
bits. By flipping the bits in this bucket, a small but constant
fraction of the errors can be corrected.

However, the desired bucket is not known in advance.
Therefore, we must recursively search through all possible
choices until the number of errors is significantly reduced,
as indicated by a substantial decrease in the size of U(z). We
prune branches where |U(x)| does not decrease significantly.
While this approach may appear to rely on brute force, careful
analysis shows that the algorithm still runs in linear time.

The previous process requires the number of corrupt bits
to be bounded by yn initially to guarantee that this number
remains below an during the search, allowing the expansion
property to apply. Our key new idea is that, even if the initial
number of corrupt bits exceeds yn (but remains bounded by
an), we can search through the first few steps to find a
branch where the number of corrupt bits drops below ~n.
Although we cannot immediately verify which branch works,
there is only a constant number of branches. So we can run
the aforementioned decoding process on all these branches and
check whether any of them produces a valid codeword.

A. Deterministic Flipping

We begin by modifying Algorithm 1 to obtain the following
deterministic flipping algorithm.

Algorithm 3 DeterFlip(z, q)
. Tpn) €FY and ¢ € R

Input: = = (x4, ..

1: t %?

2 p=p1s---,pn) < (0,---,0) €R”

3: for each v € R do

4 w, < Decode(zy(y))

5; if 1 < dp(wy,Tn()) <t then

6: Choose the smallest i € N (v) where w, and x y(,)
differ

7: i — pi+ t—dH(u;;,IN(m)

8: end if

9: end for

10: for each ¢ € [n] do
11: Flip z; if p; = ¢q
12: end for

13: return

Algorithm 3 is derived from Algorithm 1 with the following
modifications: First, it takes an additional input ¢ € R. Second,
instead of flipping each x; with probability p;, it flips =; when
p; equals g. In particular, Algorithm 3 is deterministic.

Define the finite set W :— {ﬁ 1 €72,0<1< cdo}. Note
1 _ 1

that each p; € [0,1] is an integral multiple of 5; = _- and,
therefore, lies within W. The following lemma shows that
there exists ¢ € W such that flipping all z; with p; = ¢
corrects a constant fraction of errors.

Lemma 4.1: Assume dyd > 2 and let ¢ = %0 — % > 0.
Let x € F} and y € T(G, Cp) such that dg(z,y) < an. Let
F = F(z,y). For ¢ € W, let P, be the set of i € [n] such
that p; = ¢ at the end of DeterFlip(z,). Then there exists

q € W\ {0} such that [P, N F| - |P,\ F| > £5|F|.

2ct?
Proof sketch: This follows from the proof of Theorem 3.1
and an averaging argument. See the full version [12]. []

As DeterFlip(z, ¢) only flips the bits x; with i € P, we
immediately derive the following corollary:

Corollary 4.2: Under the notation and conditions in
Lemma 4.1, there exists ¢ € W \ {0} such that |F(z',y)| <
(1- gft‘;) |F(x,y)|, where 2’ is the output of DeterFlip(z, q).

The proofs of Lemma 3.4 and Lemma 3.3 apply to Algo-
rithm 3 as well and yield the following counterparts.

Lemma 4.3: Let x € Fy and y € T(G,Cp). For all g €
W\ {0} and 2’ = DeterFlip(z, g), it holds that dy (2, y) <
(1+%)dm (x,y), or equivalently, |[F'(2', y)| < (1+%)|F(x,y)|.

Lemma 4.4: For all ¢ € W \ {0}, Algorithm 3 can be
implemented to run in O(|F(x,y)|) time, where y is any
codeword of T'(G, Cp).

B. Search for a Sequence of q

In the following, assume ddo > 2 and let eg = % — 1 > 0.

Algorithm 4 DeepFlip(z)
Imput: = = (z1,...,2,) € F}
tog (s176=17)

1. § <4 W
2: Kmin ‘R| +1
3: Tmin &L
4: for each (q,...

2 g

6 for i < 1to s do

7: () < DeterFlip(z(—1, ¢;)

8

9

09 and t = dy/2.

, where ¢ :— J05

1qs) € W\ {0})" do

W

if |[U(2()| > cyn then

: Exit the inner loop
10: else if i = s and |U(2(®))| < Ky, then
1 Emin < |U(z(3))]
12: Tmin x0
13: end if
14: end for
15: end for
16: return x,in

Theorem 4.5: Let x € Fy and y € T(G,Cp) such
that dp(z,y) < yn, where v = (1+ %)_1 5d‘10°:11 «. Then
DeepFlip(x) outputs an element ' € Fy in O(|F(z,y)|) time
such that [F(z/,y)| < 3|F(z,y)|.

A similar statement was proved in [11]. We omit the proof
and defer it to the full version [12].

C. The Deterministic Decoding Algorithm

We now present the determlnlstlc decoding algorithm. Let

t—d0/2,w—(1+) 5d‘10011a60 d—o—f ands—;’g.

Algorithm 5 MainDecode(x)

Imput: = = (z4,...,2,) € F}
. log y
LT | e |

2: 1« [logy(yn)] + 1

3: for each (q1,...,¢-) € W\ {0})" do
4: T
5: for i < 1 to r do
6: % + DeterFlip(Z, ¢;)
7 end for
8 for i < 1 to r’ do
9: % + DeepFlip(%)
10: if |U(2)| > c¢27%yn then
11: T+L1
12: Exit the inner loop
13: end if
14: end for
15: return 7 if £ #1 and |U(£)| =0 and dy(x, %) < an
16: end for
Theorem 4.6: Suppose 6dy > 2. Algorithm 5 can be

implemented to correct an errors in O(n) time for T(G, Cp).

Proof sketch: By Corollary 4.2, there exists (q1,...,q,) €
(W\{0})" such that in the corresponding iteration of the outer
loop, the first inner loop reduces the number of corrupt bits to
~n or below. By Theorem 4.5, the second loop further reduces
the number of corrupt bits to fewer than one, which must be
zero. While we do not know which (q1,...,q,) works, we
enumerate all possibilities, which are constantly many. Line 15
verifies whether any of them produces the desired codeword.
The running time can be shown to be O(n) using Lemma 4.4
and Theorem 4.5. For details, see the full version [12]. [|

V. DISTANCE AND DECODING RADIUS

In this section, we use the size-expansion trade-off intro-
duced in [8] to bound the minimum distance of T(G, Cy) and
improve the decoding radius of our algorithms. This trade-off
was originally used in [8] for the special case where (| is a
parity-check code. Proofs and background are omitted, but a
detailed treatment can be found in the full version [12].

Definition 5.1 (Size-Expansion Function): For k > 1, define
fs(k) as the optimal value of the following LP.

o 1
minimize z ; Bi
subject to Zz -Bi =k,

To prove a lower bound on |N(S)| for a set of vertices
S C L of size kan, we look at the expected expansion of
a random subset S’ C S of size an. Let 8; = % The
first constraint comes from double counting the edges between
S and N(S). The second constraint relates to the expected
number of neighbors of S’. The term 1 — (1 — %)’ is approxi-
mately the probability that a vertex in N;(S) is a neighbor of
S’. This constraint requires the expected expansion EIN (S]]

to be at least 5. Minimizing the objective %Z Bi = ?i\/;fjgl
yields the minimum possible expansion factor ‘N(SS‘)I for the
set .S, subject to the above constraints that are implied by the
expansion property.

Lemma 5.2: fs satisfy the following properties:

1) fs is non-increasing.

2) fs(k)>2

3) fs(k) is continuous with limg_,q f5(k) = § and
limg o0 f5(k) = 0.
Lemma 5.3 (Size-Expansion Trade-off [8]): For k > 1,

a (c,d, a, §)-bipartite expander with n left vertices is also a
(c,d, ka, f5(k) — O())-bipartite expander.

Theorem 5.4: Suppose ddg > 1. The minimum distance of
the Tanner code T(G,Cy) is greater than f; '
for any constant ¢ € (0,9 — —) and all sufficiently large n.

Theorem 5.5: Suppose §do > 2 Algorithm 2 and Algo-
rithm 5 can decode up to f§

i+5> an

% + ¢) an errors in O(n)

time for any constant s € (0,0 — —0) and sufﬁciently large n.
Proof: Let §' = d +e, k= f; ' (¢8'), and o = ka. Since
G is a (¢, d,a,d)- blpartlte expander, it is also a (¢, d, o', d")-
bipartite expander by Lemma 5.3. Since §'dg = 2 + doe > 2,
by Theorem 3.5 and Theorem 4.6, Algorithm 2 and Algo-
rithm 5 can decode up to o’n errors in linear time. []
Finally, the bound in Theorem 5.4 is essentially tight:
Theorem 5.6: Given §,dy,e > 0 with ddg > 1, there
exist constants ¢, d, and « such that for infinitely many n, a
(¢,d, a, 6 —€)-bipartite expander G with n left vertices exists.
Moreover, for any Cy C]Fg of minimum distance dg, there
exists such a graph G such that, by fixing an appropriate total
ordering on N (v) for each v € R(G), the minimum distance
of the resulting code T(G, Cp) is at most f; ' ”) an.
Proof sketch: We build a (c, dy)-regular graph Gy with
kan left nodes. We also build an almost (¢, d)-regular graph
G with (1 —ka)n left nodes and Z-n right nodes of degree
d — dy, while the other right nodes have degree d. Finally, we
merge Gy and GGy by pairing degree-dy nodes with degree-
(d — do) nodes. When 1%09=d0 ¢ Cy, the indicator vector of
G’s left nodes forms a codeword with weight kan. It remains
to prove that G is a (¢, d, a, § —¢)-bipartite expander with high
probability. Details can be found in the full version [12]. M
ACKNOWLEDGMENTS
The first author thanks Xue Chen for explaining their
results [8]. The second author was supported by the NSF
CAREER award CCF-2440926. He thanks Chong Shangguan

and Yuanting Shen for helpful discussions and for explaining
their results [11], and Zihan Zhang for additional discussions.

[1]
[2]

[3]

[4]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

M. Sipser and D. A. Spielman, “Expander codes,” IEEE Transactions
on Information Theory, vol. 42, no. 6, pp. 1710-1722, 1996.

V. Skachek and R. Roth, “Generalized minimum distance iterative
decoding of expander codes,” in Proceedings 2003 IEEE Information
Theory Workshop (Cat. No.O3EX674), 2003, pp. 245-248.

T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Transactions on
Information Theory, vol. 47, no. 2, pp. 599-618, 2001.

J. Feldman, M. Wainwright, and D. Karger, “Using linear programming
to decode binary linear codes,” IEEE Transactions on Information
Theory, vol. 51, no. 3, pp. 954-972, 2005.

J. Feldman, T. Malkin, R. A. Servedio, C. Stein, and M. J. Wainwright,
“LP decoding corrects a constant fraction of errors,” IEEE Transactions
on Information Theory, vol. 53, no. 1, pp. 82-89, 2007.

M. Viderman, “Linear-time decoding of regular expander codes,” ACM
Trans. Comput. Theory, vol. 5, no. 3, 2013. [Online]. Available:
https://doi.org/10.1145/2493252.2493255

——, “LP decoding of codes with expansion parameter above 2/3,”
Inf. Process. Lett., vol. 113, no. 7, p. 225-228, Apr. 2013. [Online].
Available: https://doi.org/10.1016/j.ipl.2013.01.012

X. Chen, K. Cheng, X. Li, and M. Ouyang, “Improved decoding of
expander codes,” IEEE Transactions on Information Theory, vol. 69,
no. 6, pp. 3574-3589, 2023.

S. K. Chilappagari, D. V. Nguyen, B. Vasic, and M. W. Marcellin, “On
trapping sets and guaranteed error correction capability of LDPC codes
and GLDPC codes,” IEEE Transactions on Information Theory, vol. 56,
no. 4, pp. 1600-1611, 2010.

M. Dowling and S. Gao, “Fast decoding of expander codes,” IEEE
Transactions on Information Theory, vol. 64, no. 2, pp. 972-978, 2018.
K. Cheng, M. Ouyang, C. Shangguan, and Y. Shen, “When can an
expander code correct 2(n) errors in O(n) time?” in Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques (APPROX/RANDOM 2024), 2024, pp. 61:1-61:23.

Z. Zhou and Z. Guo, “Improved decoding of tanner codes,” 2025.
[Online]. Available: https://arxiv.org/abs/2501.12293

G. Forney, “Generalized minimum distance decoding,” IEEE Transac-
tions on Information Theory, vol. 12, no. 2, pp. 125-131, Apr. 1966.

