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Abstract—In this paper, we present improved decoding algo-
rithms for expander-based Tanner codes.

We begin by developing a randomized linear-time decoding
algorithm that, under the condition that δd0 > 2, corrects up to
αn errors for a Tanner code T (G,C0), where G is a (c, d, α, δ)-
bipartite expander with n left vertices, and C0 ⊆ Fd2 is a linear
inner code with minimum distance d0. This result improves upon
the previous work of Cheng, Ouyang, Shangguan, and Shen
(RANDOM 2024), which required δd0 > 3.

We further derandomize the algorithm to obtain a deter-
ministic linear-time decoding algorithm with the same decoding
radius. Our algorithm improves upon the previous deterministic
algorithm of Cheng et al. by achieving a decoding radius of αn,
compared with the previous radius of 2α

d0(1+0.5cδ)
n.

Additionally, we investigate the size-expansion trade-off in-
troduced by the recent work of Chen, Cheng, Li, and Ouyang
(IEEE TIT 2023), and use it to provide new bounds on the
minimum distance of Tanner codes. Specifically, we prove that the
minimum distance of a Tanner code T (G,C0) is approximately
f−1
δ

(
1
d0

)
αn, where fδ(·) is the Size-Expansion Function. As

another application, we improve the decoding radius of our
decoding algorithms from αn to approximately f−1

δ

(
2
d0

)
αn.

I. INTRODUCTION

Tanner codes are constructed by assigning a linear inner
code C0 of length d and minimum distance d0 to the vertices
of a sparse bipartite graph. Specifically, bits are placed on
the left side of the bipartite graph, and each vertex on the
right side is assigned an inner code that imposes constraints
on the connected bits. To analyze the decoding algorithms of
LDPC and Tanner codes, Sipser and Spielman [1] introduced
the concept of vertex expansion. Expander codes are a special
class of Tanner codes constructed from (c, d, α, δ)-bipartite
expanders, where c, d, α, and δ are constants. Specifically,
the graph G = (L ∪ R,E) is left-regular of degree c and
right-regular of degree d, and for any S ⊆ L with |S| ≤ αn,
the number of neighbors of S is at most δc|S|. Expander codes
are known for their efficient decoding algorithms, which can
correct Ω(n) errors in linear time. Research [1]–[8] has fo-
cused on optimizing the decoding radius and other parameters
while keeping the decoding algorithm linear-time.

Consider the special case where the inner code is a parity-
check code. In this case, the flip algorithm introduced by
Sipser and Spielman [1] can decode up to (2δ−1)αn errors in
linear time for any expander code with δ > 3

4 . Later, Viderman
[6] proposed a new decoding method, which corrects up to
3δ−2
2δ−1αn errors in linear time when δ ≥ 2

3 .

More recently, Chen, Cheng, Li, and Ouyang [8] gave an im-
proved decoding algorithm by combining previous approaches
and introducing a method they term “expansion guessing.”
They also discovered a size-expansion trade-off, which enables
the expansion of larger sets to be inferred from smaller
sets. They showed that expander codes achieve a minimum
distance of 1

2(1−δ)αn, and their decoding algorithm achieves
a decoding radius of 3

16(1−δ)αn, which is nearly half of the
code’s distance. However, their algorithm still requires δ > 3

4
to use the flip algorithm. This raises an open question: What
is the minimum δ required to decode a linear number of errors
in linear time? It was shown in [6] that δ > 1

2 is necessary.
The above studies focus on the special case of expander

codes where the inner code C0 is a parity-check code. Progress
has also been made on the general case [9]–[11]. Notably,
Dowling and Gao [10] proved that the condition d0δ2 = Ω(c)
is sufficient for error correction using a flip-based decoding
algorithm. More recently, Cheng, Ouyang, Shangguan, and
Shen [11] improved this result by showing that δd0 > 3 is
sufficient for error correction, while δd0 > 1 is necessary.

However, many questions remain open about the optimal
parameters. In particular, there is still a gap between the
sufficient and necessary conditions for δd0 to enable a linear-
time decoding. In this paper, we narrow this gap by proving
that δd0 > 2 is sufficient for expander-based Tanner codes.

A. Main Results

Let T (G,C0) be a Tanner code based on a bipartite ex-
pander G and an inner code C0 (see Definition 2.2). Our first
main result is a deterministic linear-time decoding algorithm
for T (G,C0).

Theorem 1.1 (Informal version of Theorem 4.6): Suppose
δd0 > 2. There exists a deterministic O(n)-time algorithm that
corrects up to αn errors for any Tanner code T (G,C0) ⊆ Fn2 ,
where G is a (c, d, α, δ)-bipartite expander and C0 is an inner
code with minimum distance d0.

Previously, under the condition δd0 > 3, Cheng et al. [11]
gave a randomized O(n)-time decoding algorithm that corrects
αn errors, as well as a deterministic O(n)-time algorithm with
a smaller decoding radius 2α

d0(1+0.5cδ)n. Theorem 1.1 relaxes
the condition to δd0 > 2 and derandomizes the randomized
decoding algorithm without reducing the decoding radius αn.

We also investigate the size-expansion trade-off introduced
by [8]. Specifically, we define the Size-Expansion Function



fδ(k) (Definition 5.1), which satisfies the following property:
Any (c, d, α, δ)-bipartite expander is also a (c, d, kα, fδ(k))-
bipartite expander for k > 1. Consequently, our decod-
ing algorithm achieves a decoding radius of approximately
f−1δ

(
2
d0

)
αn, which is strictly larger than αn.

Theorem 1.2 (Informal version of Theorem 5.5): Theo-
rem 1.1 still holds with the decoding radius increased to
approximately f−1δ

(
2
d0

)
αn.

Finally, we establish the following tight bound on the
minimum distance of T (G,C0):

Theorem 1.3 (Informal version of Theorems 5.4 and 5.6):
Suppose δd0 > 1. The minimum distance of T (G,C0) is at
least approximately f−1δ

(
1
d0

)
αn. This lower bound is tight

in the sense that it is achieved by infinitely many examples.

II. PRELIMINARIES

For n ∈ N, denote by [n] the set {1, 2, . . . , n}.
a) Codes: All codes in this paper are assumed to be

Boolean linear codes. The Hamming weight of x ∈ Fn2 is
denoted wt(x). The Hamming distance between x, y ∈ Fn2 is
dH(x, y) :− wt(x− y). The minimum distance of a code C is
dH(C) :− min{dH(x, y) : x, y ∈ C, x 6= y}.

b) Bipartite graphs and expanders: A bipartite graph
G = (L ∪ R,E) is called (c, d)-regular if deg(u) = c for
all u ∈ L and deg(v) = d for all v ∈ R.

For S ⊆ L ∪ R, let N(S) denote the set of all neighbors
of S. Define Ni(S) as the set of vertices adjacent to exactly
i vertices in S. Additionally, define N≥i(S) :=

⋃
j≥iNj(S)

and N≤i(S) :=
⋃
j≤iNj(S). Define E(S, T ) as the set of

edges connecting the two vertex sets S and T .
Definition 2.1 (Bipartite expander): A (c, d, α, δ)-bipartite

expander is a (c, d)-regular bipartite graph G = (L ∪ R,E)
such that |N(S)| ≥ δc|S| for any S ⊆ L with |S| ≤ α|L|. For
∅ 6= S ⊆ L, call N(S)

c|S| the expansion factor of S.
Definition 2.2 (Tanner code): Let C0 be a code of length

d. Let G = (L ∪ R,E) be a (c, d, α, δ)-bipartite expander,
where L = [n] for some n ∈ N+. For each v ∈ R, fix a total
ordering on N(v), and let N(v, i) denote its i-th element for
i ∈ [d]. For x ∈ Fn2 and v ∈ R, define

xN(v) := (xN(v,1), . . . , xN(v,d)) ∈ Fd2.

The Tanner code T (G,C0) is defined as

T (G,C0) := {x ∈ Fn2 : xN(v) ∈ C0 for all v ∈ R} ⊆ Fn2 .

Throughout this paper, we fix positive integers c, d and real
numbers α, δ ∈ (0, 1] as constants. Also, let G = (L ∪R,E)
be a (c, d, α, δ)-bipartite expander with L = [n], and let C0

be a code of length d with minimum distance d0. All lemmas
and theorems are stated under the assumption that G and C0

are given, without explicitly mentioning this.
For convenience, we introduce the following definition.
Definition 2.3 (Corrupt bits and unsatisfied checks): For

x, y ∈ Fn2 , define F (x, y) = {i ∈ [n] : xi 6= yi}.
Define F (x) = F (x, y), where y is the closest codeword
to x in T (G,C0) with respect to the Hamming distance. (If

there are multiple closest codewords, y is chosen to be the
lexicographically smallest one.)

Let U(x) ⊆ R denote the set of unsatisfied checks, defined
as U(x) = {v ∈ R : xN(v) 6∈ C0}.

Finally, We present some useful auxiliary lemmas. The
proofs are omitted and can be found in the full version [12].

Lemma 2.4: For any S ⊆ L with |S| ≤ αn and integer
t ≥ 0, it holds that |N≤t(S)| ≥ δ(t+1)−1

t · c|S|.
Lemma 2.5: Let x ∈ Fnq and y ∈ T (G,C0) such that

dH(x, y) ≤ αn. Let F = F (x, y). Then c|F | ≥ |U(x)| ≥
|N≤d0−1(F )| ≥ δd0−1

d0−1 · c|F |.
Lemma 2.6: For any S ⊆ L, |N≥t(S)| ≤ c

t |S|.
Lemma 2.7: Suppose G is a (c, d, α, δ)-bipartite expander

and the inner code C0 has distance d0. If δd0 > 1, then the
distance of T (G,C0) is greater than αn.

III. RANDOMIZED DECODING

In this section, we present an improved randomized flipping
algorithm and extend it to a randomized decoding algorithm.
We follow the approach of [11] which uses the following idea:
Let each unsatisfied check v cast a “vote” on which bits to flip.
Then, each bit is flipped with a probability determined by the
votes it receives. This process corrects a constant fraction of
errors. By repeating it logarithmically many times, the received
word can be corrected with high probability.

Our improvement is achieved by allowing each v to send a
weighted vote based on dH(xN(v), y) when dH(xN(v), y) <
d0/2, where y ∈ C0 is the closest codeword to xN(v), rather
than using an unweighted vote when dH(xN(v), y) < d0/3, as
was done in [11]. (At a high level, this bears some similarity
with the GMD decoding algorithms for concatenated codes
[13], where a large dH(xN(v), y) suggests that y is likely
incorrect.) This modification enables a tighter analysis.

A. Randomized Flipping

Let Decode(x) denote the function that, given x ∈ Fd2,
returns y ∈ C0 closest to x in Hamming distance, with ties
broken by selecting the lexicographically smallest y.

We now present the randomized flipping algorithm.

Algorithm 1 RandFlip(x)

Input: x = (x1, . . . , xn) ∈ Fn2 , where n = |L|.
1: t← d0

2
2: (p1, . . . , pn)← (0, · · · , 0) ∈ Rn
3: for each v ∈ R do
4: wv ← Decode(xN(v))
5: if 1 ≤ dH(wv, xN(v)) < t then
6: Choose the smallest i ∈ N(v) where wv and xN(v)

differ
7: pi ← pi +

t−dH(wv,xN(v))

ct
8: end if
9: end for

10: for each i ∈ [n] do
11: Flip xi with probability pi
12: end for
13: return x



It is easy to see pi ∈ [0, 1] at Line 11, ensuring the validity
of this line. A proof can be found in the full version [12].

Theorem 3.1: Assume d0δ > 2. Let ε0 = d0
2 −

1
δ > 0.

Let x ∈ Fn2 and y ∈ T (G,C0) such that dH(x, y) ≤ αn.
Let x′ be the output of Algorithm 1 with x as input. Then
E[dH(x′, y)|] ≤ (1− ε0δ

t )dH(x, y).
To prove Theorem 3.1, we need the following lemma. Recall

that F (x, y) = {i ∈ [n] : xi 6= yi}.
Lemma 3.2: Let x ∈ Fn2 , y ∈ T (G,C0), and F = F (x, y).

Let v ∈ Nk(F ) for some integer k. Let wv = Decode(xN(v))
as in Algorithm 1. If wv = yN(v), then dH(wv, xN(v)) =
k. On the other hand, if wv 6= yN(v), then d0 − k ≤
dH(wv, xN(v)) ≤ k. The latter case occurs only if k ≥ d0

2 = t,
i.e., v ∈ N≥t(F ).

Proof: By the definition of F and the choice of v, we have
dH(yN(v), xN(v)) = k. As y ∈ T (G,C0), we have yN(v) ∈
C0. As wv is a vector in C0 closest to xN(v), we have

dH(wv, xN(v)) ≤ dH(yN(v), xN(v)) = k.

If wv = yN(x), then dH(wv, xN(v)) = dH(xN(v), yN(v)) = k.
On the other hand, if wv 6= yN(x), then the distance between
these two codewords of C0 is at least d0, which implies
dH(wv, xN(v)) ≥ dH(wv, yN(v))− dH(xN(v), yN(v)) ≥ d0 −
k. This proves the lemma.

Now we are ready to prove Theorem 3.1.
Proof of Theorem 3.1:

Let F = {i ∈ [n] : xi 6= yi}, whose size is dH(x, y) ≤ αn.
By and linearity of expectation, we have

E[dH(x′, y)] = |F | −

∑
i∈F

pi −
∑

i∈[n]\F

pi

 . (1)

Consider any v ∈ R. In the iteration of the first loop corre-
sponding to v, some pi may increase by t−dH(wv,xN(v))

ct . We
analyze how this affects the quantity

∑
i∈F pi −

∑
i∈[n]\F pi.

Suppose v has k neighbors in F , i.e., v ∈ Nk(F ).
Case 1: k = 0. In this case, dH(wv, xN(v)) = 0. Due to

the condition 1 ≤ dH(wv, xN(v)) < t at Line 5, the iteration
corresponding to v does not affect

∑
i∈F pi −

∑
i∈[n]\F pi.

Case 2: 1 ≤ k < t. In this case, we have dH(wv, xN(v)) =
k ∈ [1, t) and wv = yN(v) by Lemma 3.2. In the iteration
corresponding to v, the index i chosen at Line 6 is in F
since wv = yN(v). Thus, this iteration contributes exactly
t−dH(wv,xN(v))

ct = t−k
ct to

∑
i∈F pi −

∑
i∈[n]\F pi.

Case 3: t ≤ k < d0. In this case, we have dH(wv, xN(v)) ≥
d0−k = 2t−k by Lemma 3.2. Thus, the iteration correspond-
ing to v contributes at least − t−dH(wv,xN(v))

ct ≥ − t−(2t−k)ct =
t−k
ct to

∑
i∈F pi −

∑
i∈[n]\F pi.

Case 4: k ≥ d0. In this case, we have dH(wv, xN(v)) ≥
0. Thus, the iteration corresponding to v contributes at least
− t−dH(wv,xN(v))

ct ≥ − t
ct ≥

t−k
ct to

∑
i∈F pi −

∑
i∈[n]\F pi,

where the last inequality uses the fact that k ≥ d0 = 2t.
By the above discussion, We have∑

i∈F
pi −

∑
i∈[n]\F

pi ≥
d∑
k=1

t− k
ct
|Nk(F )|. (2)

By the definition of Nk(·) and the fact that G is left-regular
of degree c, we have

d∑
k=1

k|Nk(F )| = |E(F,N(F ))| = c|F |. (3)

As |F | ≤ αn and G is a (c, d, α, δ)-bipartite expander,

d∑
k=1

|Nk(F )| = |N(F )| ≥ δc|F |. (4)

Multiplying both sides of (4) by t = 1
δ + ε0 and subtracting

both sides of (3), we obtain
d∑
k=1

(t− k)|Nk(F )| ≥ ε0δc|F |. (5)

Combining (1), (2), and (5) shows E[dH(x′, y)] ≤ (1 −
ε0δ
t )|F | = (1− ε0δ

t )dH(x, y), as desired.
Following analyses similar to those in [1], [10], [11], we

have the following lemma, which bounds the time complexity
of Algorithm 1. Its proof is provided in the full version [12].

Lemma 3.3: Algorithm 1 can be implemented to run in
O(|F (x, y)|) time, where y is any codeword of T (G,C0).

While Algorithm 1 is expected to reduce the number of
corrupt bits by a constant factor, the number may increase.
Nevertheless, the following lemma shows that any such in-
crease will not be too large.

Lemma 3.4: Let x ∈ Fn2 , y ∈ T (G,C0), and F = {i ∈
[n] : xi 6= yi}. The number of i ∈ [n] \ F such that pi > 0 at
the end of RandFlip(x) is at most ct |F |. In particular, for x′ =
RandFlip(x), we always have dH(x′, y) ≤ (1 + c

t )dH(x, y).
Proof: Consider v ∈ U(x) such that the corresponding

iteration increases pi from zero to nonzero for some i ∈ [n]\F .
By the way i is chosen at Line 6, we know wv and xN(v)

differ at this bit. As i ∈ [n] \ F , we know xN(v) and yN(v)

agree at this bit. So wv 6= yN(v). By Lemma 3.2, this occurs
only if v ∈ N≥t(F ). Finally, by Lemma 2.6, the number of
v ∈ N≥t(F ) is at most c

t |F |.

B. Flipping Iteratively

We present our randomized decoding algorithm:

Algorithm 2 RandDecode(x)

Input: x = (x1, . . . , xn) ∈ Fn2
1: while |U(x)| > 0 do
2: x← RandFlip(x)
3: end while
4: return x

Theorem 3.5: Suppose d0δ > 2. Let ε0 = d0
2 −

1
δ > 0.

Let x ∈ Fn2 and y ∈ T (G,C0) such that dH(x, y) ≤ αn.
Given the input x, Algorithm 2 outputs y in O(n) time with
probability 1− o(1).

We omit the proof of Theorem 3.5 and refer the reader to the
full version [12]. We remark that Theorem 3.5 is not needed
in the analysis of our deterministic decoding algorithm.



IV. DETERMINISTIC DECODING

We begin by applying the same derandomization technique
as in [11] to develop a deterministic algorithm that corrects
γn errors when δd0 > 2, where γ =

(
1 + c

t

)−1 δd0−1
d0−1 α.

Subsequently, we introduce an additional step before running
this algorithm, extending the decoding radius to αn.

The main idea in [11] is as follows: The set L = [n] is par-
titioned into O(1) buckets based on their flipping probability
pi. It can be shown that at least one of these buckets contains
a significantly higher proportion of corrupt bits than uncorrupt
bits. By flipping the bits in this bucket, a small but constant
fraction of the errors can be corrected.

However, the desired bucket is not known in advance.
Therefore, we must recursively search through all possible
choices until the number of errors is significantly reduced,
as indicated by a substantial decrease in the size of U(x). We
prune branches where |U(x)| does not decrease significantly.
While this approach may appear to rely on brute force, careful
analysis shows that the algorithm still runs in linear time.

The previous process requires the number of corrupt bits
to be bounded by γn initially to guarantee that this number
remains below αn during the search, allowing the expansion
property to apply. Our key new idea is that, even if the initial
number of corrupt bits exceeds γn (but remains bounded by
αn), we can search through the first few steps to find a
branch where the number of corrupt bits drops below γn.
Although we cannot immediately verify which branch works,
there is only a constant number of branches. So we can run
the aforementioned decoding process on all these branches and
check whether any of them produces a valid codeword.

A. Deterministic Flipping
We begin by modifying Algorithm 1 to obtain the following

deterministic flipping algorithm.

Algorithm 3 DeterFlip(x, q)

Input: x = (x1, . . . , xn) ∈ Fn2 and q ∈ R
1: t← d0

2
2: p = (p1, . . . , pn)← (0, · · · , 0) ∈ Rn
3: for each v ∈ R do
4: wv ← Decode(xN(v))
5: if 1 ≤ dH(wv, xN(v)) < t then
6: Choose the smallest i ∈ N(v) where wv and xN(v)

differ
7: pi ← pi +

t−dH(wv,xN(v))

ct
8: end if
9: end for

10: for each i ∈ [n] do
11: Flip xi if pi = q
12: end for
13: return x

Algorithm 3 is derived from Algorithm 1 with the following
modifications: First, it takes an additional input q ∈ R. Second,
instead of flipping each xi with probability pi, it flips xi when
pi equals q. In particular, Algorithm 3 is deterministic.

Define the finite set W :−
{

i
cd0

: i ∈ Z, 0 ≤ i ≤ cd0
}

. Note
that each pi ∈ [0, 1] is an integral multiple of 1

2ct = 1
cd0

and,
therefore, lies within W . The following lemma shows that
there exists q ∈ W such that flipping all xi with pi = q
corrects a constant fraction of errors.

Lemma 4.1: Assume d0δ > 2 and let ε0 = d0
2 −

1
δ > 0.

Let x ∈ Fn2 and y ∈ T (G,C0) such that dH(x, y) ≤ αn. Let
F = F (x, y). For q ∈ W , let Pq be the set of i ∈ [n] such
that pi = q at the end of DeterFlip(x, q). Then there exists
q ∈W \ {0} such that |Pq ∩ F | − |Pq \ F | ≥ ε0δ

2ct2 |F |.
Proof sketch: This follows from the proof of Theorem 3.1

and an averaging argument. See the full version [12].
As DeterFlip(x, q) only flips the bits xi with i ∈ Pq , we

immediately derive the following corollary:
Corollary 4.2: Under the notation and conditions in

Lemma 4.1, there exists q ∈ W \ {0} such that |F (x′, y)| ≤(
1− ε0δ

2ct2

)
|F (x, y)|, where x′ is the output of DeterFlip(x, q).

The proofs of Lemma 3.4 and Lemma 3.3 apply to Algo-
rithm 3 as well and yield the following counterparts.

Lemma 4.3: Let x ∈ Fn2 and y ∈ T (G,C0). For all q ∈
W \ {0} and x′ = DeterFlip(x, q), it holds that dH(x′, y) ≤
(1+ c

t )dH(x, y), or equivalently, |F (x′, y)| ≤ (1+ c
t )|F (x, y)|.

Lemma 4.4: For all q ∈ W \ {0}, Algorithm 3 can be
implemented to run in O(|F (x, y)|) time, where y is any
codeword of T (G,C0).

B. Search for a Sequence of q

In the following, assume δd0 > 2 and let ε0 = d0
2 −

1
δ > 0.

Algorithm 4 DeepFlip(x)

Input: x = (x1, . . . , xn) ∈ Fn2
1: s←

⌈
log

(
δd0−1

2(d0−1)

)
log(1−ε)

⌉
, where ε :− ε0δ

2ct2 and t = d0/2.

2: kmin ← |R|+ 1
3: xmin ←⊥
4: for each (q1, . . . , qs) ∈ (W \ {0})s do
5: x(0) ← x
6: for i← 1 to s do
7: x(i) ← DeterFlip(x(i−1), qi)
8: if |U(x(i))| > cγn then
9: Exit the inner loop

10: else if i = s and |U(x(s))| < kmin then
11: kmin ← |U(x(s))|
12: xmin ← x(s)

13: end if
14: end for
15: end for
16: return xmin

Theorem 4.5: Let x ∈ Fn2 and y ∈ T (G,C0) such
that dH(x, y) ≤ γn, where γ =

(
1 + c

t

)−1 δd0−1
d0−1 α. Then

DeepFlip(x) outputs an element x′ ∈ Fn2 in O(|F (x, y)|) time
such that |F (x′, y)| ≤ 1

2 |F (x, y)|.
A similar statement was proved in [11]. We omit the proof

and defer it to the full version [12].



C. The Deterministic Decoding Algorithm

We now present the deterministic decoding algorithm. Let
t = d0/2, γ =

(
1 + c

t

)−1 δd0−1
d0−1 α, ε0 = d0

2 −
1
δ , and ε = ε0δ

2ct2 .

Algorithm 5 MainDecode(x)

Input: x = (x1, . . . , xn) ∈ Fn2
1: r ←

⌈
log γ

log(1−ε)

⌉
,

2: r′ ← dlog2(γn)e+ 1
3: for each (q1, . . . , qr) ∈ (W \ {0})r do
4: x̂← x
5: for i← 1 to r do
6: x̂← DeterFlip(x̂, qi)
7: end for
8: for i← 1 to r′ do
9: x̂← DeepFlip(x̂)

10: if |U(x̂)| > c2−iγn then
11: x̂←⊥
12: Exit the inner loop
13: end if
14: end for
15: return x̂ if x̂ 6=⊥ and |U(x̂)| = 0 and dH(x, x̂) ≤ αn
16: end for

Theorem 4.6: Suppose δd0 > 2. Algorithm 5 can be
implemented to correct αn errors in O(n) time for T (G,C0).

Proof sketch: By Corollary 4.2, there exists (q1, . . . , qr) ∈
(W \{0})r such that in the corresponding iteration of the outer
loop, the first inner loop reduces the number of corrupt bits to
γn or below. By Theorem 4.5, the second loop further reduces
the number of corrupt bits to fewer than one, which must be
zero. While we do not know which (q1, . . . , qr) works, we
enumerate all possibilities, which are constantly many. Line 15
verifies whether any of them produces the desired codeword.
The running time can be shown to be O(n) using Lemma 4.4
and Theorem 4.5. For details, see the full version [12].

V. DISTANCE AND DECODING RADIUS

In this section, we use the size-expansion trade-off intro-
duced in [8] to bound the minimum distance of T (G,C0) and
improve the decoding radius of our algorithms. This trade-off
was originally used in [8] for the special case where C0 is a
parity-check code. Proofs and background are omitted, but a
detailed treatment can be found in the full version [12].

Definition 5.1 (Size-Expansion Function): For k > 1, define
fδ(k) as the optimal value of the following LP.

minimize
1

k

∞∑
i=1

βi

subject to
∞∑
i=1

i · βi = k,

∞∑
i=1

(
1−

(
1− 1

k

)i)
· βi ≥ δ,

βi ≥ 0, ∀i.

To prove a lower bound on |N(S)| for a set of vertices
S ⊆ L of size kαn, we look at the expected expansion of
a random subset S′ ⊆ S of size αn. Let βi = |Ni(S)|

cαn . The
first constraint comes from double counting the edges between
S and N(S). The second constraint relates to the expected
number of neighbors of S′. The term 1− (1− 1

k )i is approxi-
mately the probability that a vertex in Ni(S) is a neighbor of
S′. This constraint requires the expected expansion E[|N(S′)|]

cαn

to be at least δ. Minimizing the objective 1
k

∑
βi = |N(S)|

ckαn

yields the minimum possible expansion factor |N(S)|
c|S| for the

set S, subject to the above constraints that are implied by the
expansion property.

Lemma 5.2: fδ satisfy the following properties:
1) fδ is non-increasing.
2) fδ(k) ≥ δ

k .
3) fδ(k) is continuous with limk→1 fδ(k) = δ and

limk→∞ fδ(k) = 0.
Lemma 5.3 (Size-Expansion Trade-off [8]): For k > 1,

a (c, d, α, δ)-bipartite expander with n left vertices is also a
(c, d, kα, fδ(k)−O( 1

n ))-bipartite expander.
Theorem 5.4: Suppose δd0 > 1. The minimum distance of

the Tanner code T (G,C0) is greater than f−1δ

(
1
d0

+ ε
)
αn

for any constant ε ∈ (0, δ − 1
d0

) and all sufficiently large n.
Theorem 5.5: Suppose δd0 > 2. Algorithm 2 and Algo-

rithm 5 can decode up to f−1δ

(
2
d0

+ ε
)
αn errors in O(n)

time for any constant ε ∈ (0, δ− 2
d0

) and sufficiently large n.
Proof: Let δ′ = 2

d0
+ε, k = f−1δ (δ′), and α′ = kα. Since

G is a (c, d, α, δ)-bipartite expander, it is also a (c, d, α′, δ′)-
bipartite expander by Lemma 5.3. Since δ′d0 = 2 + d0ε > 2,
by Theorem 3.5 and Theorem 4.6, Algorithm 2 and Algo-
rithm 5 can decode up to α′n errors in linear time.

Finally, the bound in Theorem 5.4 is essentially tight:
Theorem 5.6: Given δ, d0, ε > 0 with δd0 > 1, there

exist constants c, d, and α such that for infinitely many n, a
(c, d, α, δ−ε)-bipartite expander G with n left vertices exists.
Moreover, for any C0 ⊆ Fd2 of minimum distance d0, there
exists such a graph G such that, by fixing an appropriate total
ordering on N(v) for each v ∈ R(G), the minimum distance
of the resulting code T (G,C0) is at most f−1δ

(
1
d0

)
αn.

Proof sketch: We build a (c, d0)-regular graph G0 with
kαn left nodes. We also build an almost (c, d)-regular graph
G1 with (1−kα)n left nodes and c

kd0
n right nodes of degree

d− d0, while the other right nodes have degree d. Finally, we
merge G0 and G1 by pairing degree-d0 nodes with degree-
(d− d0) nodes. When 1d00d−d0 ∈ C0, the indicator vector of
G0’s left nodes forms a codeword with weight kαn. It remains
to prove that G is a (c, d, α, δ−ε)-bipartite expander with high
probability. Details can be found in the full version [12].
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